Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(11):1135-1141, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20238997

ABSTRACT

Previous studies have revealed that developmental regulated brain protein (Drebrin) is involved in cell- to-cell communication, nerve transmission, tumor metastasis, spermatogenesis and other life activities, but there are few studies on viruses. The aim of the current research was therefore, to study the function of Drebrin and its effect on the proliferation of porcine epidemic diarrhea virus (PEDV). The Drebrin gene was cloned according to the Drebrin gene sequence (XM_008015438.2) of Chlorocebus sabaeus registered by GenBank, and the phylogenetic tree was constructed to analyze its homology. The results showed that the CDS region of Vero cells Drebrin gene was 2088 bp long, encoding 695 amino acids, and was relatively conserved and had high homology with all species. To investigate the effect of Drebrin on the proliferation of PEDV in Vero cells, the eukaryotic expression vector pcDNA3.1-Drebrin-Flag was constructed. After transfection of Vero cells with different concentrations of pcDNA3.1-Drebrin-Flag, cells were infected with PEDV. Our results showed that overexpression of Drebrin in Vero cells could significantly inhibit the intracellular PEDV mRNA level and N protein expression, reduce the extracellular virus titer and inhibit the proliferation of PEDV. Further study on the interaction between Drebrin and PEDV S proteins by laser confocal technique was also performed. The results showed that Drebrin and S protein were co-located in the cytoplasm, suggesting that the two proteins may interact with each other. This study demonstrated for the first time that Drebrin can inhibit PEDV proliferation in Vero cells, laying a foundation for further research in to Drebrin function and provides a valuable information for anti-PEDV research.

2.
Front Microbiol ; 13: 1074513, 2022.
Article in English | MEDLINE | ID: covidwho-2311561

ABSTRACT

Porcine deltacoronavirus (PDCoV) cause diarrhea and dehydration in newborn piglets and has the potential for cross-species transmission. Rapid and early diagnosis is important for preventing and controlling infectious disease. In this study, two monoclonal antibodies (mAbs) were generated, which could specifically recognize recombinant PDCoV nucleocapsid (rPDCoV-N) protein. A colloidal gold immunochromatographic assay (GICA) strip using these mAbs was developed to detect PDCoV antigens within 15 min. Results showed that the detection limit of the GICA strip developed in this study was 103 TCID50/ml for the suspension of virus-infected cell culture and 0.125 µg/ml for rPDCoV-N protein, respectively. Besides, the GICA strip showed high specificity with no cross-reactivity with other porcine pathogenic viruses. Three hundred and twenty-five fecal samples were detected for PDCoV using the GICA strip and reverse transcription-quantitative real-time PCR (RT-qPCR). The coincidence rate of the GICA strip and RT-qPCR was 96.9%. The GICA strip had a diagnostic sensitivity of 88.9% and diagnostic specificity of 98.5%. The specific and efficient detection by the strip provides a convenient, rapid, easy to use and valuable diagnostic tool for PDCoV under laboratory and field conditions.

3.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2296316

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that causes severe diarrhea to pigs of all ages, especially the suckling piglets under one-week-old. We previously isolated a highly pathogenic PDCoV strain, CZ2020, from a diarrheal piglet and have passaged it for over 100 passages. The adaptability of the CZ2020 increased gradually in vitro as the passage increased. Amino acid mutations were observed in pp1a, pp1ab, spike, envelop, and membrane proteins, and the spike protein accounts for 66.7% of all amino acid mutations. Then, the high passage strains, CZ2020-F80 and CZ2020-F100, were selected for evaluation of the pathogenicity in three-day-old piglets to examine whether these amino acid changes affected their virulence. At 2 days postchallenge (DPC), 2/5 piglets started to show typical diarrhea, and at 4 DPC, severe diarrhea was observed in the CZ2020-challenged piglets. Viral RNA could be detected at 1 DPC in rectal swabs and reached its highest at 4 DPC in the CZ2020-challenged group. CZ2020-F80- and CZ2020-F100-challenged groups have one piglet exhibiting mild diarrhea at 4 and 6 DPC, respectively. Compared with the CZ2020-challenged group, the piglets in CZ2020-F80- and F100-challenged groups had lower viral loads in rectal swabs, intestines, and other organs. No obvious histopathological lesions were observed in the intestines of CZ2020-F80- and F100-challenged piglets. Virulent PDCoV infection could also induce strong interferons and proinflammatory cytokines in vitro and in vivo. These data indicate that the strains, CZ2020-F80 and CZ2020-F100, were significantly attenuated via serial passaging in vitro and have the potential for developing attenuated vaccine candidates.

4.
Vet Microbiol ; 280: 109718, 2023 May.
Article in English | MEDLINE | ID: covidwho-2306616

ABSTRACT

The interferon-delta family was first reported in domestic pigs and belongs to the type I interferon (IFN-I) family. The enteric viruses could cause diarrhea in newborn piglets with high morbidity and mortality. We researched the function of the porcine IFN-delta (PoIFN-δ) family in the porcine intestinal epithelial cells (IPEC-J2) cells infected with porcine epidemic diarrhea virus (PEDV). Our study found that all PoIFN-δs shared a typical IFN-I signature and could be divided into five branches in the phylogenic tree. Different strains of PEDV could induce typical IFN transitorily, and the virulent strain AH2012/12 had the strongest induction of porcine IFN-δ and IFN-alpha (PoIFN-α) in the early stage of infection. In addition, it was found that PoIFN-δ5/6/9/11 and PoIFN-δ1/2 were highly expressed in the intestine. PoIFN-δ5 had a better antiviral effect on PEDV compared to PoIFN-δ1 due to its higher induction of ISGs. PoIFN-δ1 and PoIFN-δ5 also activated JAK-STAT and IRS signaling. For other enteric viruses, transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine rotavirus (PoRV), PoIFN-δ1 and PoIFN-δ5 both showed an excellent antiviral effect. Transcriptome analyses uncovered the differences in host responses to PoIFN-α and PoIFN-δ5 and revealed thousands of differentially expressed genes were mainly enriched in the inflammatory response, antigen processing and presentation, and other immune-related pathways. PoIFN-δ5 would be a potential antiviral drug, especially against porcine enteric viruses. These studies were the first to report the antiviral function against porcine enteric viruses and broaden the new acquaintances of this type of interferon though not novelly discovered.


Subject(s)
Coronavirus Infections , Enteroviruses, Porcine , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Transcriptome , Intestines , Epithelial Cells , Interferon-alpha/pharmacology , Gene Expression Profiling/veterinary , Coronavirus Infections/veterinary
5.
PLoS Biol ; 21(3): e3002039, 2023 03.
Article in English | MEDLINE | ID: covidwho-2289032

ABSTRACT

Coronaviruses (CoVs) comprise a group of important human and animal pathogens. Despite extensive research in the past 3 years, the host innate immune defense mechanisms against CoVs remain incompletely understood, limiting the development of effective antivirals and non-antibody-based therapeutics. Here, we performed an integrated transcriptomic analysis of porcine jejunal epithelial cells infected with porcine epidemic diarrhea virus (PEDV) and identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a potential host restriction factor. CMPK2 exhibited modest antiviral activity against PEDV infection in multiple cell types. CMPK2 transcription was regulated by interferon-dependent and interferon regulatory factor 1 (IRF1)-dependent pathways post-PEDV infection. We demonstrated that 3'-deoxy-3',4'-didehydro-cytidine triphosphate (ddhCTP) catalysis by Viperin, another interferon-stimulated protein, was essential for CMPK2's antiviral activity. Both the classical catalytic domain and the newly identified antiviral key domain of CMPK2 played crucial roles in this process. Together, CMPK2, viperin, and ddhCTP suppressed the replication of several other CoVs of different genera through inhibition of the RNA-dependent RNA polymerase activities. Our results revealed a previously unknown function of CMPK2 as a restriction factor for CoVs, implying that CMPK2 might be an alternative target of interfering with the viral polymerase activity.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Humans , Animals , Swine , Interferons , Antiviral Agents/pharmacology , Proteins/genetics , Porcine epidemic diarrhea virus/genetics
6.
J Immunol ; 210(3): 271-282, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2201457

ABSTRACT

Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Transcriptome , Intestine, Small/pathology , Intestines/pathology , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL